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ABSTRACT 

Age related disorders are prominently treated by inhibition of Acetylcholinesterase.50 million people are believed to be living with 

Alzheimer or dementia around the world. Currently used drugs for Alzheimer have several neuronal side effects on the elderly. 

Aged body needs a natural drug with minimal side effects for treatment which will be an effective and natural alternative to its 

chemical counterparts. Donepezil is the well-known and validated chemical inhibitor which is widely used as a drug for treatment 

of Alzheimer. Compounds causing delay in the hydrolysis of acetylcholine by Acetylcholinesterase act as a perfect inhibitor. Our 

study is directed towards virtual screening, high precision docking and molecular dynamics studies to show the stability of natural 

inhibitors against the already validated chemical inhibitors. 251 natural inhibitors were identified through literature review which 

were then screened and docked against human recombinant Acetylcholinesterase[1-3] .Glide module of Schrodinger suits were 

used. Alongside donepezil was also docked against the enzyme. After screening and docking of natural inhibitors compound 

Diplacone showed the highest gliding score of -11.49.Donepezil showed the gliding score of -8.0.Binding site analysis showed that 

the interacting amino acids fall into the same binding site map of already validated drug donepezil.Diplacone is then analyzed for 

40 nanoseconds through molecular dynamics techniques using Growmac software and found to be stable complex(Diplacone-

Ache).Hence, it is convinced that the Diplacone can be a better alternative to its other chemical counterparts. 
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Abstract:  

Let ( )zp  be a polynomial of degree n having all its zeros on z k= ,

1k ≤ .                                  

In this paper, we prove a result concerning the higher power growth 

of ( )p z  which not only improves as well as generalizes a result 

proved by Dewan and Ahuja [ J. Math. Ineq., 5(3)(2011), 355-361.], 

but also has interesting implications to earlier results.  

Keywords: Polynomial, Polynomial Inequalities, Maximum 

Modulus. 
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1. INTRODUCTION 

For an arbitrary entire function ( )f z , we denote

( ) ( ), max
z r

M f r f z
=

=  and higher powers of ( ),M f r by 

( ){ },
s

M f r where s is a positive integer. It is a simple 

consequence from maximum modulus principle that [5, Vol. 1, 

p. 137, Problem III, 269] that for a polynomial ( )p z  of degree

n    ( ) ( )1,, pMRRpM
n≤ , 1R ≥ .            (1.1)  

The result is best possible and equality occurs in (1.1) for

( ) n
zzp λ= , 0λ ≠ . 

If we restrict ourselves to the class of polynomials having no 

zero in 1<z , then inequality (1.1) can be sharpened. In fact, it 

was shown by Ankeny and Rivlin [1] that if ( ) 0p z ≠ in 1z < , 

inequality (1.1) can be replaced by        

( ) ( )
1

, , 1
2

n
R

M p R M p
 +

≤   
 

, 1R ≥ .                 (1.2) 

Inequality (1.2) is sharp and the extremal polynomial is

( ) n
p z zα β= + , where α β= . 

For the class of polynomials not vanishing in z k< , 1k ≥ , 

Shah[7] proved that for any R k≥ ,  

( ) ( ) ( )
1

, , 1 min
1 1

n n

z k

R k R
M p R M p p z

k k =

   + −
≤ −      + +   

.  (1.3) 

The result is best possible for 1k =  with the polynomial being

( ) 1np z z= + . 

While trying to obtain inequality analogous to (1.2) for 

polynomials not vanishing in z k< , 1k ≤ , it had only been 

able to prove the following result by Dewan and Ahuja [2] for 

the particular class of polynomials having all its zeros on 

z k= , 1k ≤ . In fact, they prove 

Theorem A. If ( )
0

n

p z a z
υ

υ

υ =

=∑ is a polynomial of degree n 

having all its zeros on z k= , 1k ≤ , then for 1R ≥ and every 

positive integer s , 

( ){ } ( ){ }

( ) ( ){ } ( )
( )

2 2
1

2
1

1
p,R p,1

1 1 2 1

1 2

s s

n

n ns n ns
n n

n n

M M
k

n a k k k R a k R

n a k a

−

−

≤

 + + − + + −
 

×  
+ +  

 

       (1.4) 

In this paper, we prove an improvement as well as a 

generalization of Theorem A which has further interesting 

implications. More precisely, we obtain  
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Theorem. If ( )
0

n

p z a z
υ

υ

υ =

=∑ is a polynomial of degree 2n ≥

having all its zeros on z k= , 1k ≤ , then for any arbitrary 

complex number β
,
 1 r R≤ ≤ and every positive integer s ,                    

( ){ } ( ){ } ( ){ }

( ){ }
( ) ( )

( )

( ){ }

2
11

2
1

2 2
1

1

R 1 p, r

, 1
1 2

, 1
2

s s si i s

ns ns
n nss

n

n n

ns ns ns ns
s

p e p re M

R r n a k a
A M p

k n a k a

R r R r
s a M p

ns ns

θ θβ β

−−

−

− −
−

− ≤ −

 − +
+
 + +

 − −
− −   −   

    

                                                     if 2n >      (1.5)
 

where 

               
( )

0

2

1
1 1

, 1

a
A

M pr

 
= − − 

 
,

( ){ } ( ){ } ( ){ }

( ){ }
( )

( )

( ){ }

2
2 2

2 11

2 2
2 1

2 2 2 1 2 1
1

1

R 1 p, r

2
, 1

2 1 2

, 1
2 2 1

s s si i s

s s
ss

s s s s
s

p e p re M

a k aR r
A M p

k a k a

R r R r
s a M p

s s

θ θβ β

−

− −
−

− ≤ −

 +−+
 + +

 − −
− −   −   

 

  if 2n = ,                                   (1.6) 

where 

               
( )

0

2

1
1 1

, 1

a
A

M pr

 
= − − 

 
. 

Remark. 1.1. If we put 1r =  and 0β = in our theorem and 

considering maximum, the first two inequalities immediately 

reduce to a result of Pukhta [6].  

Corollary 1.1. If ( )
0

n

p z a z
υ

υ

υ =

=∑ is a polynomial of degree 

2n ≥  having all its zeros on z k= , 1k ≤ , then for 1R ≥ and 

every positive integer s , 

( ){ }
( )

( )
( ){ }

( ){ }

2
1

2
1

2
1

1

1
p, R 1 p,1

1 2

1 1
, 1

2

ns
n ns s

n

n n

ns ns
s

n a k aR
M M

k n a k a

R R
s a M p

ns ns

−

−

−
−

+ −
≤ +   + + 

 − −
− −  − 

   

  if 2n > . 

( ){ }
( )

( )
( ){ }

( ){ }

22
2 1

2 2

2 1

2 2 1
1

1

21
p, R 1 p,1

2 1 2

1 1
, 1

2 2 1

s
s s

s s
s

a k aR
M M

k a k a

R R
s a M p

s s

−
−

+ −
≤ + 

+ + 

 − −
− − 

− 

 

      if 2n = , 

Further, Corollary 1.1 is an improvement of Theorem A proved 

by Dewan and Ahuja [2].   

Remark. 1.2. An interesting aspect of our theorem is that we 

estimate an upper bound of ( ){ } ( ){ }R
s s

i i
p e p re

θ θβ−  

obtained in terms of the growths of the polynomial on two 

circles of radii r  such that 1 r R≤ ≤  and 1. Moreover, the 

quantity ( ){ } ( ){ }R
s s

i i
p e p re

θ θβ−  can be interpreted 

geometrically as the modulus  of the difference of the values of 

the 
st

s power, s  any positive integer, of the polynomial ( )p z  

concerned and the coefficient-perturbed polynomial ( )p zβ

obtained from ( )p z by multiplying every coefficient by an 

arbitrary complex number β , respectively evaluated at the 

corresponding points where an arbitrarily fixed ray from the 

origin of the complex plane intercepts on  two concentric 

circles of radii R  and r , where1 r R≤ ≤ , centered at the 

origin. It is worth to note that polynomial ( )p z  and its 

perturbed counterpart ( )p zβ have the same set of zeros on the 

circle z k= , 1k ≤ .   

Remark. 1.3. When we assign  1s r= =  and 0β = in our 

theorem we get the following which is an improvement of a 

result of Dewan and Ahuja [2, Corollary 3]. 
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Corollary 1.2. If ( )
0

n

p z a z
υ

υ

υ =

=∑ is a polynomial of degree 

2n ≥  having all its zeros on z k= , 1k ≤ , then for 1R ≥ ,                   

( )
( )

( )
( )

2
1

2
1

2

1

1
p, R 1 p,1

1 2

1 1

2

n
n n

n

n n

n n

n a k aR
M M

k n a k a

R R
s a

n n

−

−

−

+ −
≤ +   + + 

 − −
− −  − 

 

     if 2n > ,        

    

( )
( )

( )
( )

( )

2
2

2 1

2 2
2 1

2

1

21
p, R 1 p,1

2 1 2

1
1

2

a k aR
M M

k a k a

R
s a R

+ −
≤ +   + + 

 − 
− − − 

  

     

    if 2n = .                  

Remark. 1.4. When we set  1k s r= = =  and 0β = in the 

theorem, we get the following improved version of a result of 

Dewan and Ahuja [2, Corollary 2] which further gives the 

parallel improved match of inequality(1.2) due to Ankeny 

Rivlin [1], in case all the zeros of the polynomial lie on the unit 

circle.    

Corollary 1.3. If ( )zp is a polynomial of degree n having all its 

zeros on 1z = , then for 1R ≥ , 

( ) ( )
2

1

1 1 1
p, R p,1

2 2

n n n
R R R

M M s a
n n

− + − −
≤ − −  − 

 if 2n > , 

and 

( ) ( ) ( )
2 2

1

1 1
p, R p,1 1

2 2

R R
M M s a R

 + − 
≤ − − − 

  
 if 2n = .   

2. LEMMA 

The following lemmas are needed for the proof of the theorem. 

Lemma 2.1. If ( )
0

n

p z a z
υ

υ

υ=

=∑  is a polynomial of degree n 

having all its zeros on the circle z k= , 1k ≤ , then 

             ( )
( )

( )
2

1

2
1

, 1 , 1
1 2

n n

n

n n

n a k an
M p M p

k n a k a

−

−

 
+ 

′ ≤  
+ +  

 

                         (2.1)  

This lemma was by Dewan and Mir [3]. 

Lemma 2.2. If ( )
0

n

p z a z
υ

υ

υ =

=∑  is a polynomial of degree n, 

then for 1R ≥
          

( ) ( ) 2
0p,R p,1 ( )n n nM R M R R a−≤ − − , if 

1n > ,    

        (2.2) 

and 

( ) ( ) 0p,R p,1 ( 1)M RM R a≤ − − , if 1n = .       (2.3) 

The above results were due to Frappier et.al [4].  

Lemma 2.3. If 0T > is any constant then for 0t > the function 

                      
  

( ) 21 (1 )f t T t−= − −
                             

(2.4) 

is non-increasing function of t .               

Proof of Lemma 2.3. The proof is simple and is implied, for 

example, by derivative test.          

Proof of the Theorem  

We first prove inequality (1.5). By hypothesis ( )p z  is a 

polynomial of degree n  having all its zeros on z k= , 1k ≤

and by applying  Lemma 2.1, we have  

    ( )
( )

( )
2

1

2
1

, 1 , 1
1 2

n n

n

n n

n a k an
M p M p

k n a k a

−

−

 
+ 

′ ≤  
+ +  

for 1z = .  

        (3.1)    

For eachθ , 0 2θ π≤ < , 1 r R≤ ≤ , any complex number β  

and any positive integer s , we have 

( ){ } ( ){ } ( ) ( ){ }

( ){ } ( ){ }

R 1

R

s s s
i i s i

s s
i i

p e p re p re

p e p re

θ θ θ

θ θ

β β− = −

+ −

. 

                                                        (3.2) 
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which implies 

( ){ } ( ){ } ( ){ }

( ){ } ( ){ }

R 1 ,

R .

s s si i s

s s
i i

p e p re M p r

p e p re

θ θ

θ θ

β β− ≤ −

+ −

 

                                                                       (3.3) 

( ){ } ( ){ } ( ){ }

( ){ } ( )
1

R

,

R
s s s

i i i

r

R
s

i i i

r

d
p e p re p te dt

dt

s p te p te e dt

θ θ θ

θ θ θ
−

− =

′=

∫

∫

  

from which it is implied that          

( ){ } ( ){ }

( ) ( )
1

R
s s

i i

R
s

i i

r

p e p re

s p te p te dt

θ θ

θ θ
−

−

′≤ ∫
.     (3.4)    

As ( )p z  is a polynomial of degree 2n > , the polynomial 

( )p z′ is of degree 1 2n − ≥ , therefore applying the same 

inequality (2.2) of Lemma 2.2 to both ( )p z  and ( )p z′ , we 

have for any 1t ≥ and 0 2θ π≤ <                                   

( ) ( ) ( )2
0, 1i n n n

p te t M p t t a
θ −≤ − − .                (3.5) 

 and 

                                            

( ) ( ) ( )1 1 3
1, 1i n n n

p te t M p t t a
θ − − −′ ′≤ − − .    (3.6)   

Inequality (3.4) in conjunction with inequalities (3.5) and (3.6) 

gives  

( ){ } ( ){ } ( ) ( ){ }

( ) ( ){ }

( ){ } ( )
( )

( ) ( ){ }

1
2

0

1 1 3
1

1
1 02

1 1 3
1

R , 1

, 1

, 1 1 1
, 1

, 1

R
s s s

i i n n n

r

n n n

sR
s

n

r

n n n

p e p re s t M p t t a

t M p t t a dt

a
s t M p t

M p

t M p t t a dt

θ θ
−

−

− − −

−
−

−

− − −

− ≤ − −

′× − −

  
= − − 

  

′× − −

∫

∫

  
        (3.7)  

 By (2.4) of Lemma 2.3, the function ( )
( )

021 1
, 1

a
t

M p

−− − is a 

non-increasing function of 0t > and, in particular, for 1 r t≤ ≤ , 

we have  

( )
( )

( )
( )

0 02 21 1 1 1
, 1 , 1

a a
t r

M p M p

− −− − ≤ − − .        (3.8)    

Inequality (3.7) on using (3.8) becomes   

( ){ } ( ){ } ( ){ }

( ) ( ){ }

1
1

1 1 3
1

R , 1

, 1

R
s s s

i i s n

r

n n n

p e p re sA t M p

t M p t t a dt

θ θ
−

−

− − −

− ≤

′× − −

∫
 

where 

                               
( )

0

2

1
1 1

, 1

a
A

M pr

 
= − − 

 
. 

Using inequality (3.1) for ( ), 1M p′  in the above inequality, we 

obtain               

( ){ } ( ){ } ( ){ }

( )
( ) ( )

( ){ }

( )
( ) ( )

( ){ }

1
1

2
11 1 3

12
1

11

2
11 1 3

12
1

1

R , 1

, 1
1 2

, 1

, 1
1 2

, 1

R
s s s

i i s n

r

n nn n n

n

n n

ss

R

n nns ns ns

n

n nr

n
ss

p e p re sA t M p

n a k an
t M p t t a dt

k n a k a

sA M p

n a k an
t M p t t a dt

k n a k a

R
A M p

θ θ
−

−

−− − −

−

−−

−− − −

−

−

− ≤

  
+  × − −  + +    

=

  
+  × − −  + +    

=

∫

∫

( ) ( )
( )

( ){ }

2
1

2
1

2 2
1

1

1 2

, 1
2

s ns
n n

n

n n

ns ns ns ns
s

r n a k a

k n a k a

R r R r
s a M p

ns ns

−

−

− −
−

 − +

 + +

 − −
− −   −   

                                                                                    (3.9)   

Combining (3.3) and (3.9), the desired result follows. 

Next, inequality (1.6) is proved.  

Since ( )p z  is a polynomial of degree 2n = , the polynomial 

( )p z′ is of first degree and therefore applying inequalities (2.2) 
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and (2.3) of Lemma 2.2 respectively to ( )p z  and ( )p z′ , we 

have for any 1t ≥ and 0 2θ π≤ <  

           ( ) ( ) ( )2 2
0, 1 1i

p te t M p t a
θ ≤ − − ,               (310)   

and                                             

               ( ) ( ) ( ) 1, 1 1i
p te tM p t a

θ′ ′≤ − − .             (3.11) 

The proof of this part follows on the same lines as that of 

inequality (1.5), but instead of using inequalities (3.5) and 

(3.6), we use respectively the above inequalities (3.10) and 

(3.11).           

Hence the proof of the theorem is complete. 
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